首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   676860篇
  免费   82723篇
  国内免费   429篇
  2016年   7632篇
  2015年   11420篇
  2014年   13023篇
  2013年   18430篇
  2012年   20927篇
  2011年   21087篇
  2010年   14088篇
  2009年   13139篇
  2008年   18624篇
  2007年   19297篇
  2006年   17762篇
  2005年   17511篇
  2004年   17118篇
  2003年   16733篇
  2002年   15983篇
  2001年   29207篇
  2000年   29505篇
  1999年   23650篇
  1998年   8660篇
  1997年   9055篇
  1996年   8729篇
  1995年   8285篇
  1994年   8383篇
  1993年   8237篇
  1992年   19726篇
  1991年   18915篇
  1990年   18405篇
  1989年   18223篇
  1988年   16639篇
  1987年   16342篇
  1986年   15052篇
  1985年   14964篇
  1984年   12641篇
  1983年   11165篇
  1982年   8839篇
  1981年   8228篇
  1980年   7564篇
  1979年   12411篇
  1978年   9672篇
  1977年   9092篇
  1976年   8601篇
  1975年   9231篇
  1974年   9930篇
  1973年   9802篇
  1972年   8945篇
  1971年   8223篇
  1970年   7058篇
  1969年   6932篇
  1968年   6162篇
  1967年   5461篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet.  相似文献   
15.
Some P-450 systems, notably aromatase and 14-demethylase catalyse not only the hydroxylate reaction but also the oxidation of an alcohol into a carbonyl compound as well as a C---C bond cleavage process. All these reactions occur at the same active site. A somewhat analogous situation is noted with 17-hydroxylase-17,20-lyase that participates in hydroxylation as well as C---C bond cleavage process. The C---C bond cleavage reactions catalysed by the above enzymes conform to the general equation:

It is argued that all three types of reaction catalyzed by these enzymes may be viewed as variations on a common theme. In P-450 dependent hydroxylation the initially formed FeIII---O---O. species is converted into FeIII---O---OH and the heterolysis of the oxygen—oxygen bond of the latter then gives the oxo-derivative for which a number of canonical structures are possible; for example FeV = O ↔ (+.)FeIV = O ↔ FeIV---O.. One of these, FeIV---O. behaves like an alkoxyl radical and participates in hydrogen abstraction from C---H bond to produce FeIV---OH and carbon radical. The latter is then quenched by the delivery of hydroxyl radical from FeIV---OH. The latter species may thus be regarded as a carrier of hydroxyl radical. We have proposed that the C---C bond cleavage reaction occurs through the participation of the FeIII---O---OH species that is trapped by the electrophilic property of the carbonyl compound giving a peroxide adduct that fragments to produce an acyl—carbon cleavage. Scientific developments leading up to this conclusion are considered. In the first author's views,

“The study of mechanisms is not a scientific but a cultural activity. Mechanisms do not aim at an absolute truth but are intended to be a “running” commentary on the status of knowledge in a field. As the structural knowledge in a field advances Mechanisms evolve to take note of the new findings. Just as a constructive “running” commentary provides the stimulus for higher standards of performance, so Mechanisms call for better and firmer structural information from their practitioners”.  相似文献   

16.
17.
Abstract: The glial fibrillary acidic protein (GFAP) content was investigated using immunoblotting techniques in the septum and hippocampus of the rat after bilateral lateral fimbria transection. Seven days after surgery GFAP content increased significantly both in the septum (140% of control) and hippocampus (120% in dorsal, the less denervated, and 145% in the most denervated ventral part), indicating the occurrence of reactive gliosis. The GM1 treatment caused statistically significant attenuation of GFAP increment in all hippocampal parts. In contrast, GM1 treatment has no influence on the increase of GFAP content in the septum. Results suggest a differential effect of GM1 on the two gliotic reactions formed as a consequence of the lesion at the level of the source of innervation (septum) and the target (hippocampus).  相似文献   
18.
19.
20.
Abstract. The in vitro proliferation [uptake of 5-bromo-2'-deoxyuridine (BrdU)] and the degree of differentiation (presence of desmin) of myosatellite cells isolated from white axial muscle of carp between 3 cm and 27 cm standard length (SL) were examined 17 h after isolation. The fraction of the myosatellite cells that were both desmin positive and BrdU positive never exceeded 2% of the total number of isolated myosatellite cells, irrespective of the standard length of the donor(s). This indicates that, for carp, the temporal relationship between replication and desmin expression of myosatellite cells is different from that described for myogenic cells of mammals and birds. The percentage of BrdU positive myosatellite cells was significantly correlated with standard length: it increased from 10% for carp of about 5 cm SL to 40–50% for carp between 20 cm and 27 cm SL. The percentage of desmin positive myosatellite cells was about 50–60%; it was not significantly correlated with standard length. The percentage of myosatellite cells that were both BrdU negative and desmin negative showed a stepwise difference in this percentage with increasing length. Fish smaller than 10 cm SL, had more of these cells (10–40%), than larger fish (which had 0–12%). So, apparently the composition of the myosatellite cell population changes during growth. The low percentage of proliferating cells, and the relatively high percentage of differentiated (desmin positive) myosatellite cells obtained from 3–6 cm large carp, suggests that, in these small fish, muscle growth strongly depends on the use of a pool of myogenic cells that has been formed at an earlier stage of their development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号